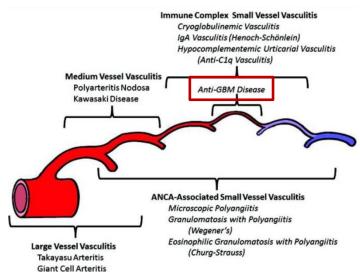



# Les anticorps associés au syndrome de Goodpasture

Benoit Nespola

Laboratoire d'immunologie


Hôpitaux Universitaires de Strasbourg





### Le syndrome de Goodpasture

- ✓ Le syndrome de Goodpasture ou maladie de Goodpasture ou maladie des anticorps anti-MBG
  - ✓ Identifié par Ernest Goodpasture en 1919
  - ✓ Vascularite des petits vaisseaux
  - √ 10-20% des glomérulonéphrites rapidement progressives (GNRP)



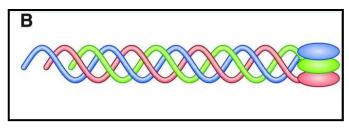
Jennette JC, Clin Exp Nephrol. 2013



### Le syndrome de Goodpasture

- ✓ Epidémiologie
  - ✓ Incidence : environ 1,5 cas / 1 000 000 par an
  - ✓ Plus fréquent dans populations blanches et asiatiques
  - ✓ 2 pics : 20-30 ans et 60-70 ans
- ✓ Facteurs de risque environnementaux
  - ✓ Tabac
  - ✓ Exposition aux solvants et hydrocarbures
  - ✓ Infections respiratoires (influenza)




### Le syndrome de Goodpasture

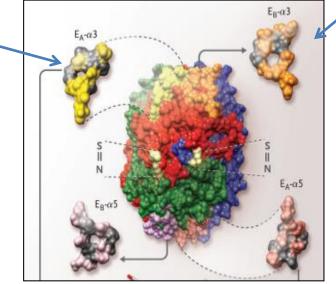
- ✓ Début brutal le plus souvent (jours)
- → Fièvre, malaises, arthralgies
- → 60-80% rénale + pulmonaire, 20-40% rénale, 10% pulmonaire
- ✓ Rénale
- → IRA, hématurie, brûlures mictionnelles, anurie, protéinurie, œdèmes, HTA
- ✓ Pulmonaire
- → Hémoptysie, toux, dyspnée, hémorragie pulmonaire massive



### La cible antigénique

- ✓ La membrane basale glomérulaire est constituée de 2 réseaux polymériques
  - √ l'un de laminine
  - √ l'autre de collagène IV
- ✓ Collagène IV formé de 3 chaînes α



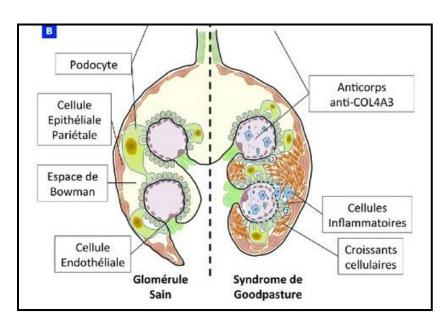

- ✓ Il existe six chaînes  $\alpha$  (1>6) pouvant former le collagène IV
  - ✓ Distribution tissulaire variable
  - $\checkmark$   $\alpha 3(IV)$ ,  $\alpha 4(IV)$  et  $\alpha 5(IV)$  sont distribuées au niveau de la membrane basale glomérulaire

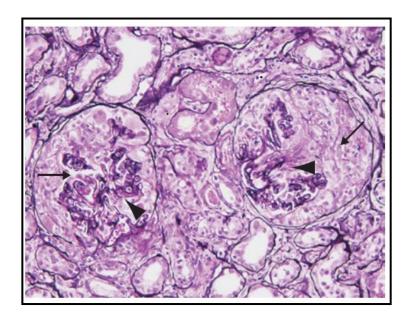


### La cible antigénique

✓ Domaine non-collagènique (NC-1) de la chaîne alpha-3 du collagène de type IV (29 kD)

- ✓ 2 épitopes EA et EB
- ✓ Conformationnel
- ✓ Distribution rénale, pulmonaire (œil, cochlée)



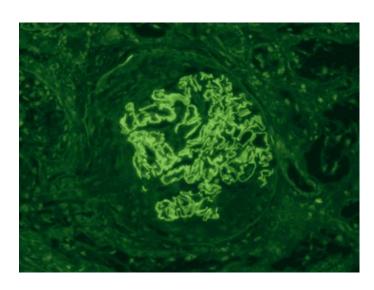


D'après Petchenko et al, NEJM, 2010

✓ Action pathogène directe des auto-anticorps (transfert passif)

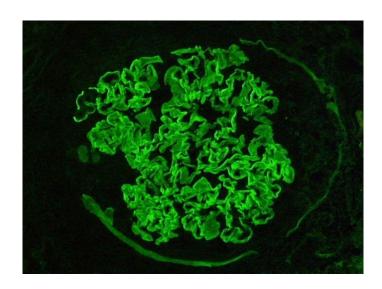


- ✓ Glomérulonéphrite avec croissants cellulaires extracapillaires (→)
- ✓ Nécrose / fibrose glomérulaire (►)
- ✓ Destruction de la capsule de Bowman





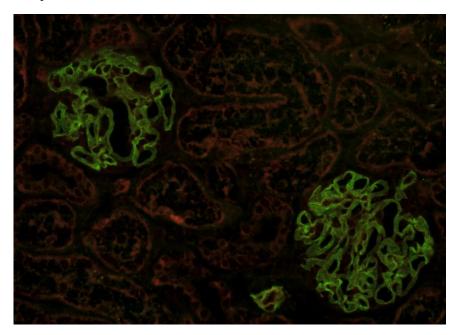

D'après Dorval et al, Archives de pédiatrie, 2017


D'après Petchenko et al, NEJM, 2010



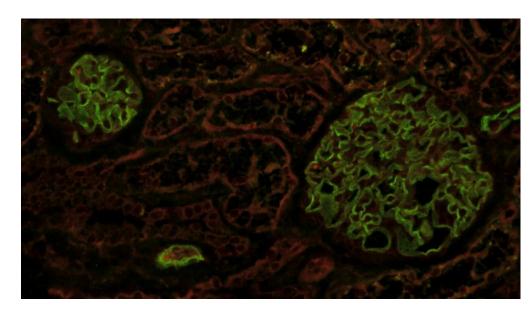
- ✓ Dépôt linéaire d'Ig G le long de la membrane basale glomérulaire en immunofluorescence directe
- ✓ Parfois associé à des dépôts de C3
- ✓ Marquage faible possible chez le sujet âgé ou diabétique

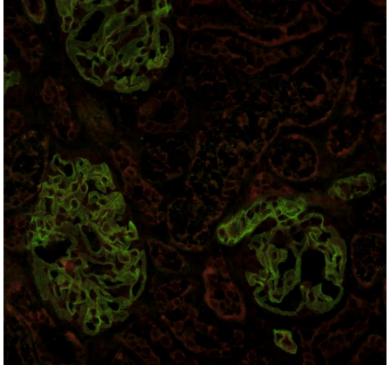



D'après Petchenko et al, NEJM, 2010

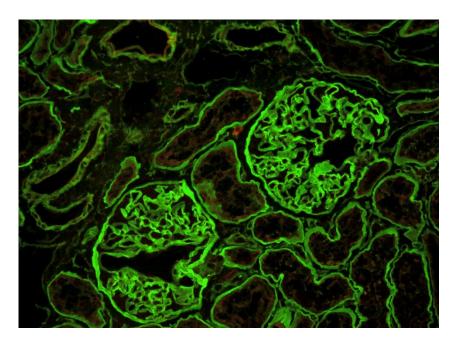


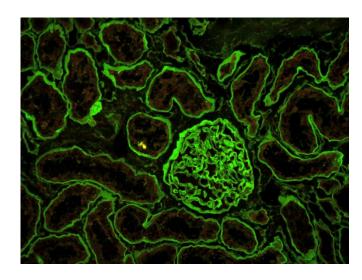
D'après Vanquaethem H, 2010

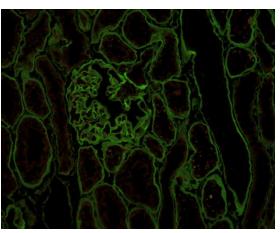




- ✓ IFI sur coupes de rein de singe traitées à l'urée 6 à 8 M
- ✓ Techniques immunoenzymatiques
  - ✓ ELISA, immunodot
- ✓ Luminex
- ✓ Chimiluminescence
- ✓ Fluorimétrie




✓ Antigène : MBG humaine recombinante ou native



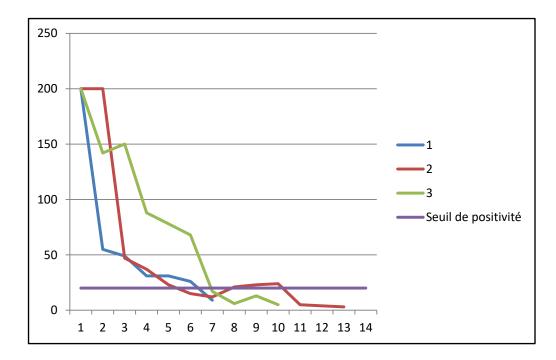






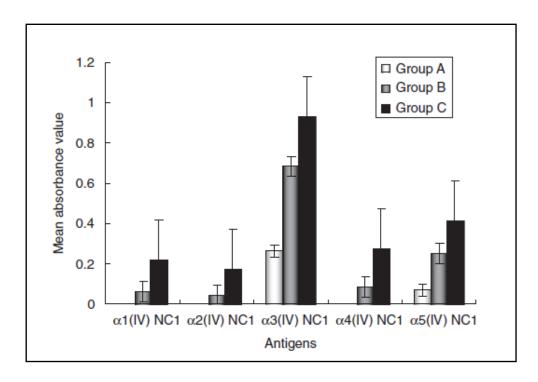





- ✓ Sensibilité > 95%
- ✓ Spécificité 90-100%
- ✓ Bonne corrélation entre les différents réactifs
- √ L'IFI est décrite comme étant moins sensible (titres faibles)

| No.   | ID                   | QUANTA<br>Flash™<br>nGBM (CU) | QUANTA<br>Flash™<br>rGBM (CU) | QUANTA<br>Lite®<br>GBM (CU) | BINDAZYME™<br>Anti-GBM | EliA™<br>GBM | WIELISA™<br>Anti-GBM | NOVA<br>Lite™<br>GBM |
|-------|----------------------|-------------------------------|-------------------------------|-----------------------------|------------------------|--------------|----------------------|----------------------|
|       | Cutoff               | 20                            | 20                            | 20                          | 3                      | 10           | 20                   |                      |
| 1 C   | GBM-02 <sup>b</sup>  | 10                            | 92                            | 5                           | 1                      | 7            | n.a.                 | Negative             |
| 2 C   | PMD~1047             | 20                            | n.a.                          | 5                           | n.a.                   | n.a.         | n.a.                 | Negative             |
| 3 C   | PMD~1340             | 24                            | n.a.                          | 8                           | n.a.                   | n.a.         | n.a.                 | Negative             |
| 4 C   | HIV~8                | 25                            | n.a.                          | 5                           | n.a.                   | n.a.         | n.a.                 | Negative             |
| 2 GPS | GBM~15 <sup>b</sup>  | 27                            | 6                             | 18                          | 1                      | 7            | 39                   | Negative             |
| 3 GPS | GBM~17 <sup>b</sup>  | _ 11                          | 8                             | 38                          | 5                      | 10           | 10                   | Negative             |
| 4 GPS | IF323~06°            | 34                            | 12                            | 136                         | 13                     | n.a.         | 35                   | 2-3+                 |
| 5 GPS | IS1252-06°           | 121                           | 165                           | 74                          | 16                     | n.a.         | 17                   | 1+                   |
| 6 GPS | IS871~09°            | 3                             | 3                             | 10                          | 0                      | n.a.         | 0                    | Negative             |
| 7 GPS | IF590~00°            | 3                             | 3                             | 4                           | 0                      | n.a.         | 0                    | Negative             |
| 8 GPS | GBM-C12 <sup>d</sup> | 27                            | 17                            | 25                          | 3                      | n.a.         | n.a.                 | Negative             |
| 9 GPS | GBM-C25 <sup>d</sup> | 3                             | 3                             | 3                           | 0                      | n.a.         | n.a.                 | Negative             |




- ✓ Examen à répéter si le titre est initialement faible
- ✓ Les techniques quantitatives permettent le suivi du titre des anticorps → décroissance sous échanges plasmatiques et immunosuppresseurs





- ✓ Titre semble pronostic
- ✓ Plus l'atteinte rénale est sévère et plus la diversité des anticorps semble importante



Groupe A : atteinte rénale faible

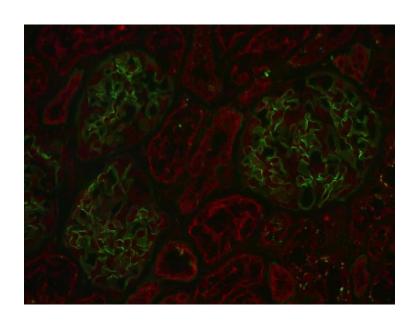
Groupe B: atteinte rénale modérée

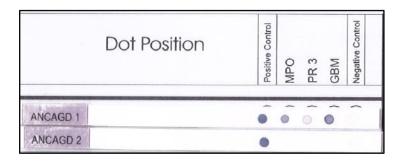
Groupe C : atteinte rénale sévère

Zhao J et al, Kidney International, 2009



### Jusque là c'est plutôt simple...


mais parfois ça se complique!








# Cas positifs en IFI / négatifs en confirmation





ELISA : < 20 U/ml

Ac anti-MBG non dirigés contre le domaine non collagénique de la chaine  $\alpha 3$  du collagène de type IV ?



### A propos de 2 cas

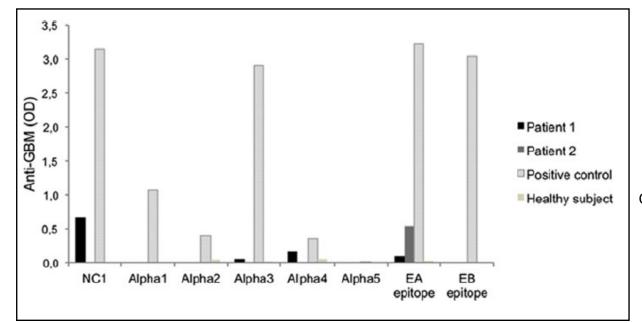


Patient de 30 ans hospitalisé en pneumologie pour bilan d'hémoptysie persistante depuis 2 semaines

- Tabagisme actif, pas d'exposition professionnelle, pas de traitement médicamenteux
- Scanner thoracique : foyer d'hémorragie intra-alvéolaire
- Fibroscopie bronchique mettant en évidence un caillot de constitution récente
- Pas d'infection pulmonaire, pas de cellules tumorales dans le LBA
- Pas d'argument pour une maladie systémique
  - → Hémoptysie d'étiologie indéterminée






## Patiente de 71 ans hospitalisée en néphrologie pour IRA anurique sur rein unique

- Néphrectomie droite en 2011 sur pyélonéphrite aigue
- Tabagisme actif, HTA, diabète type 2, cancer de l'ovaire diagnostiqué et traité en 2004
- 2019 : pyélonéphrite aigue obstructive, prise d'AINS et traitement par IEC pas de reprise de la fonction rénale, dépendance à la dialyse
- Ac anti-MBG contrôlés deux semaines plus tard : résultats identiques
  - → non mentionnés dans le CR d'hospitalisation





- √ Titres généralement faibles en IFI
- ✓ Biopsie positive ou négative
- ✓ Anticorps dirigés contre l'épitope conformationnel ? Autre sous-unité ?



Clavarino G et al. Eur. J. Immunol, 2018





### Syndrome de Goodpasture atypique



Bonjour c'est la néphrologie...

- ✓ Biopsie positive (IgG) mais absence d'Ac dans le sang
  - ✓ Atteinte rénale modérée, pas / peu de croissants cellulaires
  - ✓ Protéinurie plus élevée
  - ✓ Peu d'atteinte pulmonaire
  - ✓ Meilleur pronostic rénal
- ✓ Plusieurs séries décrites dans la littérature





### Syndrome de Goodpasture atypique

- ✓ Pourquoi les anticorps ne sont-ils pas détectés dans le sang ?
  - ✓ Titre faible ? Autre sous-unité α reconnue ?
  - $\rightarrow$  technique de confirmation : sous-unité  $\alpha$ 3
  - $\rightarrow$  Anticorps dirigés contre  $\alpha 4$ ,  $\alpha 5$  ou complexe  $\alpha 345$  ?
  - ✓ Ac de faible affinité ? ou absents du sang si affinité ++ pour le rein
  - ✓ IgG4 ? Sous-classe moins reconnue par les tests ELISA







### Anticorps anti-MBG Ig A

Bonjour c'est encore la néphrologie...

- ✓ Biopsie positive Ig A
- ✓ Mise en évidence possible des Ac anti-MBG Ig A circulants
  - →IFI avec un conjugué anti-lg A
- ✓ Pronostic semble plus mauvais
  - ✓ Pas de récupération de la fonction rénale
  - √ Hémorragies alvéolaires





#### Anticorps anti-MBG + ANCA

- ANCA et anti-MBG
  - 2 à 15 % des sérums ANCA + ont des Ac anti-MBG
  - 20 à 47 % des sérums anti-MBG + ont des ANCA
  - → Ac anti-MPO dans 66-80% des cas
- ANCA apparaitraient initialement puis apparition des Acanti-MBG
- Rôle des ANCA dans la survenue des anti-MBG ?
  - Démasquage d'épitopes cryptiques ?
  - On trouve des Ac dirigés contre des épitopes du domaine NC1 de la chaine α3(IV) chez les patients avec des ANCA
  - Mais pas de reconnaissance du peptide MPO par les Ac anti-MBG





#### Anticorps anti-MBG + ANCA

- Profil clinique des vascularites à ANCA
  - → + de manifestations extra-rénales
  - → meilleure récupération de la fonction rénale *vs* anti-MBG isolés
  - → risque de rechute plus élevée *vs* anti-MBG isolés
- Mais atteinte rénale initiale plus sévère vs ANCA isolés et hémorragies alvéolaires
- Parfois glomérulonéphrite à croissants sans dépôts linéaires d'Ig G / membrane basale glomérulaire

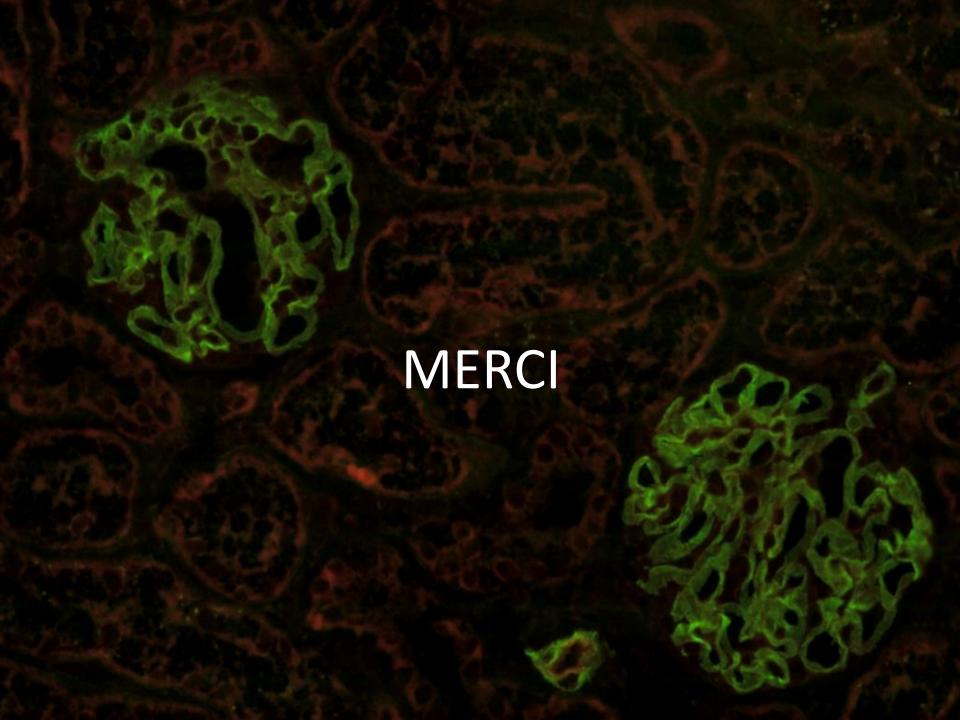




### Anticorps anti-MBG + ANCA

✓ Anticorps détectés par ELISA et / ou IFI

| Age | Gender | Anti-GBM titre<br>at presentation<br>(NR < 10) | , ,        |
|-----|--------|------------------------------------------------|------------|
| 66  | F      | 359                                            | Negative   |
| 70  | F      | 200                                            | Yes/MPO/20 |
| 79  | F      | 28                                             | Yes/MPO/33 |
| 64  | М      | 33                                             | Yes/MPO/60 |


✓ Titre Ac anti-MBG plus faible que si Ac anti-MBG seuls

Sadeghi-Alavijeh, BMC Nephrology (2018)



#### Conclusion

- Le diagnostic du syndrome de Goodpasture est le plus souvent simple
- Mais il existe des cas particuliers
- Spécificité des techniques utilisées dans les publications?
- Intérêt d'utiliser plusieurs techniques au diagnostic?
- Mais probable arrêt de la commercialisation des lames de reins de singes

